Multi-Domain Image Completion for Random Missing Input Data
نویسندگان
چکیده
منابع مشابه
Matrix Completion for Multi-label Image Classification
Recently, image categorization has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. This paper formulates image categorization as a multi-label classification problem using recent advances in matrix completion. Under this setting, classification of testing data is posed as a problem of completing unknown label entries on a data ma...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملSpatio-Temporal Tensor Completion for Estimating Missing Internet Traffic Data
Network traffic data consists of Traffic Matrix (TM), which represents the volumes of traffic between Origin and Destination (OD) pairs in the network. It is a key input parameter of network engineering tasks. However, direct measurement of the OD pairs traffic is usually not feasible. Even good traffic measurement systems can suffer from errors, missing data. So obtaining the ODs traffic preci...
متن کاملRandom forest missing data algorithms
Random forest (RF) missing data algorithms are an attractive approach for imputing missing data. They have the desirable properties of being able to handle mixed types of missing data, they are adaptive to interactions and nonlinearity, and they have the potential to scale to big data settings. Currently there are many different RF imputation algorithms, but relatively little guidance about the...
متن کاملBest analogs for replacing missing image data
Identifying the historical data that is the best analog with a pattern from which a forecast is sought allows time series data to be extrapolated. That technique of best analogs is most effective when the data contains underlying deterministic chaos. Here we apply similar techniques, modified to use two space dimensions instead of one time dimension, to fill-in and extrapolate missing image dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2020
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2020.3046444