Multi-attention multiple instance learning
نویسندگان
چکیده
A new multi-attention based method for solving the MIL problem (MAMIL), which takes into account neighboring patches or instances of each analyzed patch in a bag, is proposed. In method, one attention modules adjacent instances, several are used to get diverse feature representation patches, and module unite different representations provide an accurate classification (instance) whole bag. Due MAMIL, combined their neighbors form embeddings small dimensionality simple realized. Moreover, types efficiently processed, bag by using implemented. approach explaining predictions Numerical experiments with various datasets illustrate proposed method.
منابع مشابه
Attention-based Deep Multiple Instance Learning
Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a bag of instances. In this paper, we state the MIL problem as learning the Bernoulli distribution of the bag label where the bag label probability is fully parameterized by neural networks. Furthermore, we propose a neural network-based permutation-invariant aggregation operator tha...
متن کاملFully Convolutional Multi-Class Multiple Instance Learning
Multiple instance learning (MIL) can reduce the need for costly annotation in tasks such as semantic segmentation by weakening the required degree of supervision. We propose a novel MIL formulation of multi-class semantic segmentation learning by a fully convolutional network. In this setting, we seek to learn a semantic segmentation model from just weak image-level labels. The model is trained...
متن کاملAttention-Based Target Localization Using Multiple Instance Learning
We propose a novel Multiple Instance Learning (MIL) framework to perform target localization from image sequences. The proposed approach consists of a softmax logistic regression MIL algorithm using log covariance features to automatically learn the model of a target that persists across input frames. The approach makes no assumptions about the target’s motion model and can be used to learn mod...
متن کاملLearning Instance Weights in Multi-Instance Learning
Multi-instance (MI) learning is a variant of supervised machine learning, where each learning example contains a bag of instances instead of just a single feature vector. MI learning has applications in areas such as drug activity prediction, fruit disease management and image classification. This thesis investigates the case where each instance has a weight value determining the level of influ...
متن کاملDiscover Multiple Novel Labels in Multi-Instance Multi-Label Learning
Multi-instance multi-label learning (MIML) is a learning paradigm where an object is represented by a bag of instances and each bag is associated with multiple labels. Ordinary MIML setting assumes a fixed target label set. In real applications, multiple novel labels may exist outside this set, but hidden in the training data and unknown to the MIML learner. Existing MIML approaches are unable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2022
ISSN: ['0941-0643', '1433-3058']
DOI: https://doi.org/10.1007/s00521-022-07259-5