MR-based Synthetic CT Images Generated Using Generative Adversarial Networks for Nasopharyngeal Carcinoma Radiotherapy Treatment Planning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Synthetic Medical Images from Dual Generative Adversarial Networks

Currently there is strong interest in data-driven approaches to medical image classification. However, medical imaging data is scarce, expensive, and fraught with legal concerns regarding patient privacy. Typical consent forms only allow for patient data to be used in medical journals or education, meaning the majority of medical data is inaccessible for general public research. We propose a no...

متن کامل

Generating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method

Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...

متن کامل

SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks

Autonomous driving is one of the most recent topics of interest which is aimed at replicating human driving behavior keeping in mind the safety issues. We approach the problem of learning synthetic driving using generative neural networks. The main idea is to make a controller trainer network using images plus key press data to mimic human learning. We used the architecture of a stable GAN to m...

متن کامل

Improved Part Segmentation Performance by Optimising Realism of Synthetic Images using Cycle Generative Adversarial Networks

In this paper we report on improved part segmentation performance using convolutional neural networks to reduce the dependency on the large amount of manually annotated empirical images. This was achieved by optimising the visual realism of synthetic agricultural images. In Part I, a cycle consistent generative adversarial network was applied to synthetic and empirical images with the objective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Radiation Oncology*Biology*Physics

سال: 2020

ISSN: 0360-3016

DOI: 10.1016/j.ijrobp.2020.07.2156