Moser’s estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov type operators in non-divergence form

We prove some Schauder type estimates and an invariant Harnack inequality for a class of degenerate evolution operators of Kolmogorov type. We also prove a Gaussian lower bound for the fundamental solution of the operator and a uniqueness result for the Cauchy problem. The proof of the lower bound is obtained by solving a suitable optimal control problem and using the invariant Harnack inequality.

متن کامل

Martingale problems for some degenerate Kolmogorov equations

We obtain Calderón-Zygmund estimates for some degenerate equations of Kolmogorov type with inhomogeneous nonlinear coefficients. We then derive the well-posedness of the martingale problem associated with related degenerate operators, and therefore uniqueness in law for the corresponding stochastic differential equations. Some density estimates are established as well.

متن کامل

Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients

We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...

متن کامل

Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients

In this paper we derive globalW 1,∞ and piecewiseC1,α estimates for solutions to divergence form elliptic equations with piecewise Hölder continuous coefficients. The novelty of these estimates is that, even though they depend on the shape and on the size of the surfaces of discontinuity of the coefficients, they are independent of the distance between these surfaces.

متن کامل

A Third-Order Scheme for Numerical Fluxes to Guarantee Non-Negative Coefficients for Advection-Diffusion Equations

According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. In case of advection-diffusion equations, so far there have been not found stable schemes with positive difference coefficients in a family of numerical sch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2019

ISSN: 0362-546X

DOI: 10.1016/j.na.2019.07.001