Morphic and automatic words: maximal blocks and Diophantine approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation

Let w be a morphic word over a finite alphabet Σ, and let ∆ be a nonempty subset of Σ. We study the behavior of maximal blocks consisting only of letters from ∆ in w, and prove the following: let (ik, jk) denote the starting and ending positions, respectively, of the k’th maximal ∆-block in w. Then lim supk→∞(jk/ik) is algebraic if w is morphic, and rational if w is automatic. As a result, we s...

متن کامل

Maximal Blocks in Morphic and Automatic Words

Let w be a morphic word over a finite alphabet Σ, and let ∆ be a subalphabet. We study the behavior of maximal blocks of ∆ letters in w, and prove the following: let (ik, jk) denote the starting and ending positions, respectively, of the k’th maximal ∆-block in w. Then lim supk→∞(jk/ik) is algebraic if w is morphic, and rational if w is automatic. As a results, we show that the same holds if (i...

متن کامل

Multidimensional generalized automatic sequences and shape-symmetric morphic words

Numeration Systems Definition An abstract numeration system is a triple S = (L,Σ, <) where L is a regular language over a totally ordered alphabet (Σ, <). Enumerating the words of L with respect to the genealogical ordering induced by < gives a one-to-one correspondence repS : N → L valS = rep −1 S : L → N. Example L = a∗, Σ = {a} n 0 1 2 3 4 · · · rep (n) ε a aa aaa aaaa · · · Abstract Numerat...

متن کامل

fragmentability and approximation

in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...

15 صفحه اول

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2011

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa149-2-7