Morita duality and Noetherian rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Bounded Noetherian Rings

Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...

متن کامل

Non-noetherian Grothendieck Duality

For any separated map f : X → Y of quasi-compact quasiseparated schemes, Rf∗ : D + qc(X) → D (Y ) has a right adjoint f . If f is proper and pseudo-coherent (e.g., finitely-presented and flat) then Duality and tor-independent Base Change hold for f . Preface This is a research summary written early in 1991, concerning results obtained by the author during a stay at MSRI in Berkeley during 1989–...

متن کامل

On Nonnil-Noetherian Rings

Let R be a commutative ring with 1 such that Nil(R) is a divided prime ideal of R. The purpose of this paper is to introduce a new class of rings that is closely related to the class of Noetherian rings. A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of R is finitely generated. We show that many of the properties of Noetherian rings are also true for Nonnil-Noetherian rings; ...

متن کامل

Rigid left Noetherian rings

Let R be an associative ring. A map σ : R → R is called a ring endomorphism if σ(x+y) = σ(x)+σ(y) and σ(xy) = σ(x)σ(y) for all elements a,b ∈ R. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idR and zero 0R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1981

ISSN: 0021-8693

DOI: 10.1016/0021-8693(81)90210-6