More on extremal positive semidefinite doubly stochastic matrices
نویسندگان
چکیده
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملOn Doubly Positive Semidefinite Programming Relaxations
Recently, researchers have been interested in studying the semidefinite programming (SDP) relaxation model, where the matrix is both positive semidefinite and entry-wise nonnegative, for quadratically constrained quadratic programming (QCQP). Comparing to the basic SDP relaxation, this doubly-positive SDP model possesses additional O(n2) constraints, which makes the SDP solution complexity subs...
متن کاملA note on doubly stochastic graph matrices
A sharp lower bound for the smallest entries, among those corresponding to edges, of doubly stochastic matrices of trees is obtained, and the trees that attain this bound are characterized. This result is used to provide a negative answer to Merris’ question in [R. Merris, Doubly stochastic graph matrices II, Linear Multilin. Algebra 45 (1998) 275–285]. © 2005 Elsevier Inc. All rights reserved....
متن کاملOn A Conjecture Concerning Doubly Stochastic Matrices
In a 2002 paper, Kirkland showed that if T ∈ Rn×n is an irreducible stochastic matrix with stationary distribution vector πT , then for A = I − T , maxj=1,...,n πj‖A j ‖∞ ≥ n−1 n , where Aj , j = 1, . . . , n, are the (n − 1) × (n − 1) principal submatrices of A obtained by deleting the j–th row and column of A. He also conjectured that equality holds in that lower bound if and only if either T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1992
ISSN: 0024-3795
DOI: 10.1016/0024-3795(92)90336-9