Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering
نویسندگان
چکیده
منابع مشابه
Random numbers for large scale distributed Monte Carlo simulations
Monte Carlo simulations are one of the major tools in statistical physics, complex system science, and other fields, and an increasing number of these simulations is run on distributed systems like clusters or grids. This raises the issue of generating random numbers in a parallel, distributed environment. In this contribution we demonstrate that multiple linear recurrences in finite fields are...
متن کاملOn sequential Monte Carlo sampling methods for Bayesian filtering
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several ...
متن کاملAdaptive Filtering for Progressive Monte Carlo Image Rendering
Image filtering is often applied as a post-process to Monte Carlo generated pictures, in order to reduce noise. In this paper we present an algorithm based on density estimation techniques that applies an energy preserving adaptive kernel filter to individual samples during image rendering. The used kernel widths diminish as the number of samples goes up, ensuring a reasonable noise versus bias...
متن کاملAdaptive K-Means Clustering For Improving Non- Local Means Filtering
Recording devices whether analog or digital, have traits which make them susceptible to noise. In selecting a noise reduction algorithm, one must weigh several factors. Image denoising is defined as a method to recover a true image from an observed noisy image and is applied in display systems to improve the quality of image. One of the popular denoising methods, NLM, produces the quality of im...
متن کاملReliable kinetic Monte Carlo simulation based on random set sampling
Kinetic Monte Carlo (KMC) method has been widely used in simulating rare events such as chemical reactions or phase transitions. Yet lack of complete knowledge of transitions and the associated rates is one major challenge for accurate KMC predictions. In this paper, a reliable KMC (R-KMC) mechanism is proposed in which sampling is based on random sets instead of random numbers to improve the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2014
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2014.2327813