Monotonicity of entropy for real quadratic rational maps

نویسندگان

چکیده

Abstract The monotonicity of entropy is investigated for real quadratic rational maps on the circle R ∪ { ∞ stretchy="false">} based natural partition corresponding moduli space ${\mathcal{M}}_{2}(\mathbb{R})$?> mathvariant="script">M 2 stretchy="false">( stretchy="false">) into its monotonic, covering, unimodal and bimodal regions. Utilizing theory polynomial-like mappings, we prove that level sets function ${h}_{\mathbb{R}}$?> h are connected in (−+−)-bimodal region a portion . Based numerical evidence, conjecture holds throughout region, but it fails (+−+)-bimodal maps.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Models for Some Quadratic Rational Maps

Consider a quadratic rational self-map of the Riemann sphere such that one critical point is periodic of period 2, and the other critical point lies on the boundary of its immediate basin of attraction. We will give explicit topological models for all such maps. We also discuss the corresponding parameter picture. Stony Brook IMS Preprint #2007/1 February 2007

متن کامل

M ay 2 00 9 Monotonicity of entropy for real multimodal maps ∗

In [16], Milnor posed the Monotonicity Conjecture that the set of parameters within a family of real multimodal polynomial interval maps, for which the topological entropy is constant, is connected. This conjecture was proved for quadratic by Milnor & Thurston [17] and for cubic maps by Milnor & Tresser, see [18] and also [5]. In this paper we will prove the general case.

متن کامل

The Moduli Space of Quadratic Rational Maps

Let M2 be the space of quadratic rational maps f : P 1 → P , modulo the action by conjugation of the group of Möbius transformations. In this paper a compactification X of M2 is defined, as a modification of Milnor’s M 2 ' CP , by choosing representatives of a conjugacy class [f ] ∈ M2 such that the measure of maximal entropy of f has conformal barycenter at the origin in R, and taking the clos...

متن کامل

On the geometry of bifurcation currents for quadratic rational maps

We describe the behaviour at infinity of the bifurcation current in the moduli space of quadratic rational maps. To this purpose, we extend it to some closed, positive (1, 1)-current on a two-dimensional complex projective space and then compute the Lelong numbers and the self-intersection of the extended current.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2021

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/ac15aa