Monomial Flocks and Herds Containing a Monomial Oval

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial Flocks and Herds Containing a Monomial Oval

Let F be a flock of the quadratic cone Q: X 2=X1X3 , in PG(3, q), q even, and let 6t : X0 =xt X1 + t X2 +zt X3 , t # Fq , be the q planes defining the flock F. A flock is equivalent to a herd of ovals in PG(2, q), q even, and to a flock generalized quadrangle of order (q, q). We show that if the herd contains a monomial oval, this oval is the Segre oval. This implies a result on the existence o...

متن کامل

On Monomial Flocks

We study monomial flocks of quadratic cones of PG(3, q), with emphasis on the case where the flock is semifield, providing some nonexistence and some uniqueness results. In addition, we give a computer-free proof of the existence of the sporadic semifield flock of the quadratic cone of PG(3, 35) (and hence of the sporadic translation ovoid of Q(4, 35)), and relate that flock to the sporadic sim...

متن کامل

Monomial Ideals

Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.

متن کامل

Monomial Resolutions

Let M be a monomial ideal in the polynomial ring S = k[x1, . . . , xn] over a field k. We are interested in the problem, first posed by Kaplansky in the early 1960’s, of finding a minimal free resolution of S/M over S. The difficulty of this problem is reflected in the fact that the homology of arbitrary simplicial complexes can be encoded (via the Stanley-Reisner correspondence [BH,Ho,St]) int...

متن کامل

Monomial Testing and Applications

In this paper, we devise two algorithms for the problem of testing q-monomials of degree k in any multivariate polynomial represented by a circuit, regardless of the primality of q. One is an O(2) time randomized algorithm. The other is an O(12.8) time deterministic algorithm for the same q-monomial testing problem but requiring the polynomials to be represented by tree-like circuits. Several a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1998

ISSN: 0097-3165

DOI: 10.1006/jcta.1997.2855