MONOMIAL BASES AND BRANCHING RULES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subresultants and generic monomial bases

Given n polynomials in n variables of respective degrees d1, . . . , dn, and a set of monomials of cardinality d1 . . . dn, we give an explicit subresultant-based polynomial expression in the coefficients of the input polynomials whose non-vanishing is a necessary and sufficient condition for this set of monomials to be a basis of the ring of polynomials in n variables modulo the ideal generate...

متن کامل

Extended Vertex Operator Algebras and Monomial Bases

We present a vertex operator algebra which is an extension of the level k vertex operator algebra for the ŝl2 conformal field theory. We construct monomial basis of its irreducible representations.

متن کامل

Monomial Bases and Polynomial System Solving

This paper addresses the problem of eecient construction of monomial bases for the coordinate rings of zero-dimensional varieties. Existing approaches rely on Grr ob-ner bases methods { in contrast, we make use of recent developments in sparse elimination techniques which allow us to strongly exploit the structural sparseness of the problem at hand. This is done by establishing certain properti...

متن کامل

Notes on Affine Canonical and Monomial Bases

We investigate the affine canonical basis ([L2]) and the monomial basis constructed in [LXZ] in Lusztig’s geometric setting. We show that the transition matrix between the two bases is upper triangular with 1’s in the diagonal and coefficients in the upper diagonal entries in Z≥0[v, v ]. As a consequence, we show that part of the monomial basis elements give rise to resolutions of support varie...

متن کامل

Monomial bases related to the n! conjecture

Let μ = (μ1 ≥ μ2 ≥ · · · ≥ μk > 0) be a partition of n. We shall identify μ with its Ferrers diagram (using the French notation). To each cell s of the Ferrers diagram, we associate its coordinates (i, j), where i is the height of s and j the position of s in its row. The pairs (i − 1, j − 1) occurring while s describes μ will be briefly referred to as the set of the biexponents of μ. Now let (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2020

ISSN: 1083-4362,1531-586X

DOI: 10.1007/s00031-020-09585-1