Molecular Evolution of the Oxygen-Binding Hemerythrin Domain
نویسندگان
چکیده
منابع مشابه
Molecular Evolution of the Oxygen-Binding Hemerythrin Domain
BACKGROUND The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly,...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملformation and evolution of regional organizations: the case study of the economic cooperation organization (eco)
abstract because of the many geopolitical, geo economical and geo strategically potentials and communicational capabilities of eco region, members can expand the convergence and the integration in base of this organization that have important impact on members development and expanding peace in international and regional level. based on quality analyzing of library findings and experts interv...
15 صفحه اولThe evolution of starch-binding domain.
Amylolytic enzymes belonging to three distinct families of glycosidases (13, 14, 15) contain the starch-binding domain (SBD) positioned almost exclusively at the C-terminus. Detailed analysis of all available SBD sequences from 43 different amylases revealed its independent evolutionary behaviour with regard to the catalytic domains. In the evolutionary tree based on sequence alignment of the S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0157904