Molecular dissection of gating in the ClC-2 chloride channel
نویسندگان
چکیده
منابع مشابه
Molecular dissection of gating in the ClC-2 chloride channel.
The ClC-2 chloride channel is probably involved in the regulation of cell volume and of neuronal excitability. Site-directed mutagenesis was used to understand ClC-2 activation in response to cell swelling, hyperpolarization and acidic extracellular pH. Similar to equivalent mutations in ClC-0, neutralizing Lys566 at the end of the transmembrane domains results in outward rectification and a sh...
متن کاملQuantitative Analysis of the Voltage-dependent Gating of Mouse Parotid ClC-2 Chloride Channel
Various ClC-type voltage-gated chloride channel isoforms display a double barrel topology, and their gating mechanisms are thought to be similar. However, we demonstrate in this work that the nearly ubiquitous ClC-2 shows significant differences in gating when compared with ClC-0 and ClC-1. To delineate the gating of ClC-2 in quantitative terms, we have determined the voltage (V(m)) and time de...
متن کاملGating the glutamate gate of CLC-2 chloride channel by pore occupancy
CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage-sensing domains; instead, their protopore gates (residi...
متن کاملLeukoencephalopathy upon disruption of the chloride channel ClC-2.
ClC-2 is a broadly expressed plasma membrane chloride channel that is modulated by voltage, cell swelling, and pH. A human mutation leading to a heterozygous loss of ClC-2 has previously been reported to be associated with epilepsy, whereas the disruption of Clcn2 in mice led to testicular and retinal degeneration. We now show that the white matter of the brain and spinal cord of ClC-2 knock-ou...
متن کاملElimination of the Slow Gating of Clc-0 Chloride Channel by a Point Mutation
The inactivation of the ClC-0 chloride channel is very temperature sensitive and is greatly facilitated by the binding of a zinc ion (Zn2+) from the extracellular side, leading to a Zn2+-induced current inhibition. To further explore the relation of Zn2+ inhibition and the ClC-0 inactivation, we mutated all 12 cysteine amino acids in the channel and assayed the effect of Zn2+ on these mutants. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The EMBO Journal
سال: 1997
ISSN: 1460-2075
DOI: 10.1093/emboj/16.7.1582