Moduli of Germs of Legendrian Curves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Legendrian curves in T³

Using convex surfaces and Kanda's classification theorem, we classify Legendrian isotopy classes of Legendrian linear curves in all tight contact structures on T 3. Some of the knot types considered in this article provide new examples of non transversally simple knot types.

متن کامل

Moduli of Elliptic Curves

The purpose of these notes is to provide a quick introduction to the moduli of elliptic curves. There are many excellent and thorough references on the subject, ranging from the slightly archaic [Igu59] and [Shi94] to the more difficult [KM85] and [DR73]. Brian’s forthcoming book on the Ramanujan conjecture also covers some of this material and includes a careful comparison of the transcendenta...

متن کامل

Holomorphic Dynamics near Germs of Singular Curves

Let M be a two dimensional complex manifold, p ∈ M and F a germ of holomorphic foliation of M at p. Let S ⊂ M be a germ of an irreducible, possibly singular, curve at p in M which is a separatrix for F . We prove that if the Camacho-Sad-Suwa index Ind(F , S, p) 6∈ Q ∪ {0} then there exists another separatrix for F at p. A similar result is proved for the existence of parabolic curves for germs ...

متن کامل

Proper holomorphic Legendrian curves in SL2(C)

In this paper we prove that every open Riemann surface properly embeds in the Special Linear group SL2(C) as a holomorphic Legendrian curve, where SL2(C) is endowed with its standard contact structure. As a consequence, we derive the existence of proper, weakly complete, flat fronts in the real hyperbolic space H with arbitrary complex structure.

متن کامل

Singular Moduli of Shimura Curves

The j-function acts as a parametrization of the classical modular curve. Its values at complex multiplication (CM) points are called singular moduli and are algebraic integers. A Shimura curve is a generalization of the modular curve and, if the Shimura curve has genus 0, a rational parameterizing function exists and when evaluated at a CM point is again algebraic over Q. This paper shows that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques

سال: 2009

ISSN: 0240-2963

DOI: 10.5802/afst.1224