Module Categories over Equivariantized Tensor Categories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

fuzzy projective modules and tensor products in fuzzy module categories

let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...

متن کامل

Module Categories over Pointed Hopf Algebras

We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).

متن کامل

Tensor Categories

These are lecture notes for the course 18.769 “Tensor categories”, taught by P. Etingof at MIT in the spring of 2009. In these notes we will assume that the reader is familiar with the basic theory of categories and functors; a detailed discussion of this theory can be found in the book [ML]. We will also assume the basics of the theory of abelian categories (for a more detailed treatment see t...

متن کامل

Tilting in module categories

Let M be a module over an associative ring R and σ[M ] the category of M -subgenerated modules. Generalizing the notion of a projective generator in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective in the category of P -generated modules, (ii) every P -generated module is P presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ]. Examples ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moscow Mathematical Journal

سال: 2017

ISSN: 1609-4514

DOI: 10.17323/1609-4514-2017-17-1-97-128