Modular Dvoretzky, Type-Cotype, Khinchin-Kahane and Grothendieck Inequality Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kahane-Khinchin type Averages

We prove a Kahane-Khinchin type result with a few random vectors, which are distributed independently with respect to an arbitrary log-concave probability measure on Rn. This is an application of small ball estimate and Chernoff’s method, that has been recently used in the context of Asymptotic Geometric Analysis in [1], [2].

متن کامل

The Khinchin–kahane Inequality and Banach Space Embeddings for Metric Groups

We extend the Khinchin–Kahane inequality to an arbitrary abelian metric group G . In the special case where G is normed, we prove a refinement which is sharp and which extends the sharp version for Banach spaces. We also provide an alternate proof for normed metric groups as a consequence of a general “transfer principle”. This transfer principle has immediate applications to stochastic inequal...

متن کامل

INEQUALITIES OF THE KAHANE-KHINCHIN TYPE AND SECTIONS OF Lp-BALLS

We extend Kahane-Khinchin type inequalities to the case p > −2. As an application we verify the slicing problem for the unit balls of finite-dimensional spaces that embed in Lp, p > −2.

متن کامل

An Extension of the Kahane-khinchine Inequality

(2) r n N I I P Ï 1/p r n N \\} E j ; ^ J >cp ExyTM>*J fr )l lli==1 II ; l l l i = 1 II ) Recalling that in general {E| f ^ } 1 ^ decreases to exp E log \f\ as p decreases to zero, one sees that (1) is a strictly stronger statement than (2); in fact (1) says simply that cp may be taken bounded away from zero in (2). Note that the inequality obtained from (1) by replacing ej with the jth Rademac...

متن کامل

Kahane-Khinchin’s inequality for quasi-norms

We extend the recent results of R. Lata la and O. Guédon about equivalence of Lq-norms of logconcave random variables (KahaneKhinchin’s inequality) to the quasi-convex case. We construct examples of quasi-convex bodies Kn ⊂ IRn which demonstrate that this equivalence fails for uniformly distributed vector on Kn (recall that the uniformly distributed vector on a convex body is logconcave). Our e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2023

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4352368