Models for Overdispersion Count Data with Generalized Distribution: An Application to Parasites Intensity

نویسندگان

چکیده

The Poisson regression model is widely used for count data. This assumes equidispersion. In practice, equidispersion seldom reflected in However, real-life data, the variance usually exceeds mean. situation known as overdispersion. Negative binomial distribution and other mix models are often to overdispersion Another extension of negative another data univariate generalized Waring. addition, developed by Famoye can be analysis When contains a large number zeros, it necessary use zero-inflated models. this study, different emphasized excessive zeros For purpose, real set was analysed with model, Famoye, Waring foregoing Log-likelihood, Akaike information criterion, Bayes Vuong statistics were comparisons.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion

In analyzing complicated data, we are often unwilling or not confident to impose a parametric model for the data-generating structure. One important example is data analysis for proportional or count data with overdispersion. The obvious advantage of assuming full parametric models is that one can resort to likelihood analyses, for instance, to use AIC or BIC to choose the most appropriate regr...

متن کامل

Modeling Zero-Inflated Count Data with Underdispersion and Overdispersion

A common problem in modeling count data is underdispersion or overdispersion. This paper discusses the distinction between overdispersion due to excess zeros and overdispersion due to values that are greater than 0. It shows how to use exploratory data analysis to determine the dispersion patterns and that the dispersion patterns can change depending on the predictors and the subpopulation that...

متن کامل

Modelling count data with overdispersion and spatial effects

In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different ways. In particular, the negative binomial and the generalized Poisson distribution are addressed whe...

متن کامل

Statistical Methods for Overdispersion in mRNA-Seq Count Data

Recent developments in Next-Generation Sequencing (NGS) technologies have opened doors for ultra high throughput sequencing mRNA (mRNA-seq) of the whole transcriptome. mRNA-seq has enabled researchers to comprehensively search for underlying biological determinants of diseases and ultimately discover novel preventive and therapeutic solutions. Unfortunately, given the complexity of mRNA-seq dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of new theory

سال: 2021

ISSN: ['2149-1402']

DOI: https://doi.org/10.53570/jnt.902066