Modeling Vehicle Merging Position Selection Behaviors Based on a Finite Mixture of Linear Regression Models
نویسندگان
چکیده
منابع مشابه
An Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملVariable Selection in Finite Mixture of Regression Models
In the applications of finite mixture of regression (FMR) models, often many covariates are used, and their contributions to the response variable vary from one component to another of the mixture model. This creates a complex variable selection problem. Existing methods, such as the Akaike information criterion and the Bayes information criterion, are computationally expensive as the number of...
متن کاملWavelet-based scalar-on-function finite mixture regression models
Classical finite mixture regression is useful for modeling the relationship between scalar predictors and scalar responses arising from subpopulations defined by the di ering associations between those predictors and responses. The classical finite mixture regression model is extended to incorporate functional predictors by taking a wavelet-based approach in which both the functional predictors...
متن کاملRobust variable selection for mixture linear regression models
In this paper, we propose a robust variable selection to estimate and select relevant covariates for the finite mixture of linear regression models by assuming that the error terms follow a Laplace distribution to the data after trimming the high leverage points. We introduce a revised Expectation-maximization (EM) algorithm for numerical computation. Simulation studies indicate that the propos...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2950444