Modeling Vehicle Insurance Adoption by Automobile Owners: A Hybrid Random Forest Classifier Approach

نویسندگان

چکیده

This study presents a novel hybrid framework combining feature selection, oversampling, and machine learning (ML) to improve the prediction performance of vehicle insurance. The addresses class imbalance problem in binary classification tasks by employing principal component analysis for synthetic minority oversampling technique random forest ML classifier prediction. results demonstrate that proposed outperforms conventional approach achieves better accuracy. purpose this is provide insurance managers practitioners with insights into how accuracy decrease financial risks industry.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thresholding a Random Forest Classifier

The original Random Forest derives the final result with respect to the number of leaf nodes voted for the corresponding class. Each leaf node is treated equally and the class with the most number of votes wins. Certain leaf nodes in the topology have better classification accuracies and others often lead to a wrong decision. Also the performance of the forest for different classes differs due ...

متن کامل

Improving the explainability of Random Forest classifier - user centered approach.

Machine Learning (ML) methods are now influencing major decisions about patient care, new medical methods, drug development and their use and importance are rapidly increasing in all areas. However, these ML methods are inherently complex and often difficult to understand and explain resulting in barriers to their adoption and validation. Our work (RFEX) focuses on enhancing Random Forest (RF) ...

متن کامل

Efficient Learning of Random Forest Classifier using Disjoint Partitioning Approach

Random Forest is an Ensemble Supervised Machine Learning technique. Research work in the area of Random Forest aims at either improving accuracy or improving performance. In this paper we are presenting our research towards improvement in learning time of Random Forest by proposing a new approach called Disjoint Partitioning. In this approach, we are using disjoint partitions of training datase...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

Prediction of Online Vehicle Insurance System using Bayes Classifier – A Proposed Approach

A classification technique (or classifier) is a systematic approach used in building classification models from an input data set. Some examples include decision tree classifier, rule based classifiers, neural networks, support vector machines and naïve Bayes classifiers. Each technique employs a learning algorithm to identify a model that best fits the relationships between the attribute set a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Processes

سال: 2023

ISSN: ['2227-9717']

DOI: https://doi.org/10.3390/pr11020629