Modeling golden section in plants

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of the Golden Section

13. K. Jordan. Chapters on the Classical Calculus of Probability. Akademiai Kiadb, Budapest, 1972. 14. P. A. MacMahon. Combinatory Analysis, Vols. I and II. New York: Chelsea, 1960. 15. G. P. Patil & J. K. Wani. "On Certain Structural Properties of the Logarithmic Series Distribution and the First Type Stirling Distribution." Sankhya, Series A, 27 (1965):271-180. 16. J. Riordan. An Introduction...

متن کامل

The Golden Section as Optical Limitation

The golden section, ϕ = (1 + √5)/2 = 1.618... and its companion ϕ = 1/ϕ = ϕ -1 = 0.618..., are irrational numbers which for centuries were believed to confer aesthetic appeal. In line with the presence of golden sectioning in natural growth patterns, recent EEG recordings show an absence of coherence between brain frequencies related by the golden ratio, suggesting the potential relevance of th...

متن کامل

Lainiotis filter, golden section and Fibonacci sequence

The relation between the discrete time Lainiotis filter on the one side and the golden section and the Fibonacci sequence on the other is established. As far as the random walk system is concerned, the relation between the Lainiotis filter and the golden section is derived through the Riccati equation since the steady state estimation error covariance is related to the golden section. The relat...

متن کامل

GOLDEN 2-LIKE Transcription Factors of Plants

Golden2-like (GLK) transcription factors are members of the GARP family of Myb transcription factors with an established relationship to chloroplast development in the plant kingdom. In the last century, Golden2 was proposed as a second golden producing factor and identified as controlling cellular differentiation in maize leaves. Then, GLKs were also found to play roles in disease defense and ...

متن کامل

On Machin’s formula with Powers of the Golden Section

In this note, we find all solutions of the equation π 4 = a arctan(φκ)+ b arctan(φ`), in integers κ and ` and rational numbers a and b, where φ is the golden section. MSC: 11D45, 11D85, 11R04, 11R29.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress in Natural Science

سال: 2009

ISSN: 1002-0071

DOI: 10.1016/j.pnsc.2008.07.004