Modeling and Handling Overdispersion Health Science Data with Zero-Inflated Poisson Model
نویسندگان
چکیده
منابع مشابه
Modeling Zero-Inflated Count Data with Underdispersion and Overdispersion
A common problem in modeling count data is underdispersion or overdispersion. This paper discusses the distinction between overdispersion due to excess zeros and overdispersion due to values that are greater than 0. It shows how to use exploratory data analysis to determine the dispersion patterns and that the dispersion patterns can change depending on the predictors and the subpopulation that...
متن کاملA score test for overdispersion in zero-inflated poisson mixed regression model.
Count data with extra zeros are common in many medical applications. The zero-inflated Poisson (ZIP) regression model is useful to analyse such data. For hierarchical or correlated count data where the observations are either clustered or represent repeated outcomes from individual subjects, a class of ZIP mixed regression models may be appropriate. However, the ZIP parameter estimates can be s...
متن کاملZero-inflated Poisson regression mixture model
Excess zeros and overdispersion are commonly encountered phenomena that limit the use of traditional Poisson regression models for modeling count data. The focus of this paper is on modeling count data in the case that a population has excess zero counts and also consists of several sub-populations in the non-zero counts. The proposed zero-inflated Poisson regression mixture model accounts for ...
متن کاملModeling zero-inflated count data with glmmTMB
Ecological phenomena are often measured in the form of count data. These data can be analyzed using generalized linear mixed models (GLMMs) when observations are correlated in ways that require random effects. However, count data are often zero-inflated, containing more zeros than would be expected from the standard error distributions used in GLMMs, e.g., parasite counts may be exactly zero fo...
متن کاملScore tests for heterogeneity and overdispersion in zero-inflated Poisson and binomial regression models
Hall (2000) has described zero-inflated Poisson and binomial regression models that include random effects to account for excess zeros and additional sources of heterogeneity in the data. The authors of the present paper propose a general score test for the null hypothesis that variance components associated with these random effects are zero. For a zero-inflated Poisson model with random inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Modern Applied Statistical Methods
سال: 2013
ISSN: 1538-9472
DOI: 10.22237/jmasm/1367382420