Model-Free Reinforcement Learning of Impedance Control in Stochastic Environments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning: Model-free

Simply put, reinforcement learning (RL) is a term used to indicate a large family of dierent algorithms RL that all share two key properties. First, the objective of RL is to learn appropriate behavior through trialand-error experience in a task. Second, in RL, the feedback available to the learning agent is restricted to a reward signal that indicates how well the agent is behaving, but does ...

متن کامل

Variable Impedance Control - A Reinforcement Learning Approach

One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not t...

متن کامل

Depth Control of Model-Free AUVs via Reinforcement Learning

In this paper, we consider depth control problems of an autonomous underwater vehicle (AUV) for tracking the desired depth trajectories. Due to the unknown dynamical model of the AUV, the problems cannot be solved by most of modelbased controllers. To this purpose, we formulate the depth control problems of the AUV as continuous-state, continuous-action Markov decision processes (MDPs) under un...

متن کامل

Multitask model-free reinforcement learning

Conventional model-free reinforcement learning algorithms are limited to performing only one task, such as navigating to a single goal location in a maze, or reaching one goal state in the Tower of Hanoi block manipulation problem. It has been thought that only model-based algorithms could perform goal-directed actions, optimally adapting to new reward structures in the environment. In this wor...

متن کامل

Weighted Double Deep Multiagent Reinforcement Learning in Stochastic Cooperative Environments

Despite single agent deep reinforcement learning has achieved significant success due to the experience replay mechanism, Concerns should be reconsidered in multiagent environments. This work focus on the stochastic cooperative environment. We apply a specific adaptation to one recently proposed weighted double estimator and propose a multiagent deep reinforcement learning framework, named Weig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Autonomous Mental Development

سال: 2012

ISSN: 1943-0604,1943-0612

DOI: 10.1109/tamd.2012.2205924