Model-Free Control for Dynamic-Field Acoustic Manipulation Using Reinforcement Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning: Model-free

Simply put, reinforcement learning (RL) is a term used to indicate a large family of dierent algorithms RL that all share two key properties. First, the objective of RL is to learn appropriate behavior through trialand-error experience in a task. Second, in RL, the feedback available to the learning agent is restricted to a reward signal that indicates how well the agent is behaving, but does ...

متن کامل

Multitask model-free reinforcement learning

Conventional model-free reinforcement learning algorithms are limited to performing only one task, such as navigating to a single goal location in a maze, or reaching one goal state in the Tower of Hanoi block manipulation problem. It has been thought that only model-based algorithms could perform goal-directed actions, optimally adapting to new reward structures in the environment. In this wor...

متن کامل

Model-Free Trajectory Optimization for Reinforcement Learning

Many of the recent Trajectory Optimization algorithms alternate between local approximation of the dynamics and conservative policy update. However, linearly approximating the dynamics in order to derive the new policy can bias the update and prevent convergence to the optimal policy. In this article, we propose a new model-free algorithm that backpropagates a local quadratic time-dependent Q-F...

متن کامل

Depth Control of Model-Free AUVs via Reinforcement Learning

In this paper, we consider depth control problems of an autonomous underwater vehicle (AUV) for tracking the desired depth trajectories. Due to the unknown dynamical model of the AUV, the problems cannot be solved by most of modelbased controllers. To this purpose, we formulate the depth control problems of the AUV as continuous-state, continuous-action Markov decision processes (MDPs) under un...

متن کامل

MODEL-FREE INTELLIGENT CONTROL USING REINFORCEMENT LEARNING AND TEMPORAL ABSTRACTION-APPLIED TO pH CONTROL

This article presents a solution to pH control based on model-free intelligent control (MFIC) using reinforcement learning. This control technique is proposed because the algorithm gives a general solution for acid-base system, yet simple enough for its implementation in existing control hardware. In standard reinforcement learning, the interaction between an agent and the environment is based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2969277