Model fitting and inference under latent equilibrium processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Latent Hawkes Processes

Hawkes processes are multivariate point processes that model excitatory interactions among vertices in a network. Each vertex emits a sequence of discrete events: points in time with associated content, or marks. Unlike Poisson processes, Hawkes processes allow events on one vertex to influence the subsequent rate of events on downstream vertices. With this property, they are ideally suited to ...

متن کامل

Approximate Inference in Latent Diffusion Processes from Continuous Time Observations

We propose a novel approximate inference approach for continuous time stochastic dynamical systems observed in both discrete and continuous time with noise. Our expectation-propagation approach generalises the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models wi...

متن کامل

Approximate Inference in Latent Diffusion Processes from Continuous Time Observations

We propose a novel approximate inference approach for continuous time stochastic dynamical systems observed in both discrete and continuous time with noise. Our expectation-propagation approach generalises the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models wi...

متن کامل

Model Selection in Statistical Inference and Geometric Fitting Kenichi

Taking line tting to points in two dimensions as a typical example, we point out the inherent di erence between statistical inference and geometric tting. We describe their duality in the sense that the asymptotic properties of statistical inference in the limit of an in nite number of observations hold for geometric tting in the limit of in nitesimal perturbations. We contrast stochastic model...

متن کامل

Regression Model Fitting under Differential Privacy and Model Inversion Attack

Differential privacy preserving regression models guarantee protection against attempts to infer whether a subject was included in the training set used to derive a model. It is not designed to protect attribute privacy of a target individual when model inversion attacks are launched. In model inversion attacks, an adversary uses the released model to make predictions of sensitive attributes (u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Computing

سال: 2007

ISSN: 0960-3174,1573-1375

DOI: 10.1007/s11222-006-9015-6