Model-based subspace clustering

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based subspace clustering

We discuss a model-based approach to identifying clusters of objects based on subsets of attributes, so that the attributes that distinguish a cluster from the rest of the population may depend on the cluster being considered. The method is based on a Pólya urn cluster model for multivariate means and variances, resulting in a multivariate Dirichlet process mixture model. This particular model-...

متن کامل

Constraint-Based Subspace Clustering

In high dimensional data, the general performance of traditional clustering algorithms decreases. This is partly because the similarity criterion used by these algorithms becomes inadequate in high dimensional space. Another reason is that some dimensions are likely to be irrelevant or contain noisy data, thus hiding a possible clustering. To overcome these problems, subspace clustering techniq...

متن کامل

Subspace distribution clustering hidden Markov model

Most contemporary laboratory recognizers require too much memory to run, and are too slow for mass applications. One major cause of the problem is the large parameter space of their acoustic models. In this paper, we propose a new acoustic modeling methodology which we call subspace distribution clustering hidden Markov modeling (SDCHMM) with the aim at achieving much more compact acoustic mode...

متن کامل

Subspace Clustering

Data structure analysis is an important basis of machine learning and data science, which is now widely used in computational visualization problems, e.g. facial recognition, image classification, and motion segmentation. In this project, I would like to deal with a set of small classification problems and use methods like PCA, spectral analysis, kmanifold, etc. By exploring different methods, ...

متن کامل

Subspace-Clustering-Based Multispectral Image Compression

This paper describes a subspace clustering strategy for the spectral compression of multispectral images. Unlike standard PCA, this approach finds clusters in different subspaces of different dimension. Consequently, instead of representing all spectra in a single low-dimensional subspace of a fixed dimension, spectral data are assigned to multiple subspaces having a range of dimensions from on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2006

ISSN: 1936-0975

DOI: 10.1214/06-ba111