MLLR Based Speaker Adaptation for Indian Accents
نویسندگان
چکیده
منابع مشابه
Lattice-based Unsupervised Mllr for Speaker Adaptation
In this paper we explore the use of lattice-based information for unsupervised speaker adaptation. As initially formulated, maximum likelihood linear regression (MLLR) aims to linearly transform the means of the gaussian models in order to maximize the likelihood of the adaptation data given the correct hypothesis (supervised MLLR) or the decoded hypothesis (unsupervised MLLR). For the latter, ...
متن کاملSpeaker Adaptation Using Lattice-based MLLR
This paper presents lattice-based maximum likelihood linear regression (MLLR) for unsupervised adaptation. Lattice MLLR accumulates the statistics used in the MLLR transform estimation procedure using a forward-backward pass through a word-lattice of alternative hypotheses rather than assuming that the 1-best transcription is accurate as in standard unsupervised MLLR. This results in the abilit...
متن کاملInter-class MLLR for speaker adaptation
This paper examines the use of interdependencies of parameter classes in transformation-based speaker adaptation algorithms such as maximum likelihood linear regression (MLLR). In transformation-based adaptation, increasing the number of transformation classes can provide more detailed information for adaptation, but at the expense of greater estimation error with small amounts of data. In this...
متن کاملTransformation Sharing Strategies for MLLR Speaker Adaptation
Transformation Sharing Strategies for MLLR Speaker Adaptation Arindam Mandal Chair of the Supervisory Committee: Professor Mari Ostendorf Electrical Engineering Maximum Likelihood Linear Regression (MLLR) estimates linear transformations of automatic speech recognition (ASR) parameters and has achieved significant performance improvements in speaker-independent ASR systems by adapting to target...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computing and Digital Systemss
سال: 2017
ISSN: 2210-142X
DOI: 10.12785/ijcds/060508