ML-CB: Machine Learning Canvas Block

نویسندگان

چکیده

Abstract With the aim of increasing online privacy, we present a novel, machine-learning based approach to blocking one three main ways website visitors are tracked online—canvas fingerprinting. Because act canvas fingerprinting uses, at its core, JavaScript program, and because many these programs reused across web, able fit several machine learning models around semantic representation potentially offending achieving accurate robust classifiers. Our supervised is trained on dataset created by scraping roughly half million websites using custom Google Chrome extension storing information related canvas. Classification leverages our key insight that images drawn have facially distinct appearance, allowing us manually classify files drawn; take this step further train classifiers not malleable themselves, but more-difficult-to-change, underlying source code generating images. As result, ML-CB allows for more tracker blocking.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Java-ML: A Machine Learning Library

Java-ML is a collection of machine learning and data mining algorithms, which aims to be a readily usable and easily extensible API for both software developers and research scientists. The interfaces for each type of algorithm are kept simple and algorithms strictly follow their respective interface. Comparing different classifiers or clustering algorithms is therefore straightforward, and imp...

متن کامل

Dlib-ml: A Machine Learning Toolkit

There are many excellent toolkits which provide support for developing machine learning software in Python, R, Matlab, and similar environments. Dlib-ml is an open source library, targeted at both engineers and research scientists, which aims to provide a similarly rich environment for developing machine learning software in the C++ language. Towards this end, dlib-ml contains an extensible lin...

متن کامل

ML Confidential: Machine Learning on Encrypted Data

We demonstrate that, by using a recently proposed leveled homomorphic encryption scheme, it is possible to delegate the execution of a machine learning algorithm to a computing service while retaining confidentiality of the training and test data. Since the computational complexity of the homomorphic encryption scheme depends primarily on the number of levels of multiplications to be carried ou...

متن کامل

ACL2(ml): Machine-Learning for ACL2

ACL2(ml) is an extension for the Emacs interface of ACL2. This tool uses machine-learning to help the ACL2 user during the proof-development. Namely, ACL2(ml) gives hints to the user in the form of families of similar theorems, and generates auxiliary lemmas automatically. In this paper, we present the two most recent extensions for ACL2(ml). First, ACL2(ml) can suggest now families of similar ...

متن کامل

ML for ML: Learning Cost Semantics by Experiment

It is an open problem in static resource bound analysis to connect high-level resource bounds with the actual execution time and memory usage of compiled machine code. This paper proposes to use machine learning to derive a cost model for a high-level source language that approximates the execution cost of compiled programs on a specific hardware platform. The proposed technique starts by fixin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings on Privacy Enhancing Technologies

سال: 2021

ISSN: ['2299-0984']

DOI: https://doi.org/10.2478/popets-2021-0056