Mining closed patterns in relational, graph and network data
نویسندگان
چکیده
منابع مشابه
Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملMining Edge-disjoint Patterns in Graph-relational Data
Diverse types of data are associated with proteins, including network and categorical data. While graph mining techniques have long focused on data with no more than one label per node, generalizations have recently been developed. We show that existing generalizations are not well suited to typical biological networks and are likely to return few or no results on protein regulatory networks. T...
متن کاملmining frequent patterns in uncertain and relational data streams using the landmark windows
todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. in this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملMining Temporal Patterns from Relational Data
Agents in dynamic environments have to deal with world representations that change over time. In order to allow agents to act autonomously and to make their decisions on a solid basis an interpretation of the current scene is necessary. If intentions of other agents or events that are likely to happen in the future can be recognized, the agent’s performance can be improved as it can adapt the b...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematics and Artificial Intelligence
سال: 2012
ISSN: 1012-2443,1573-7470
DOI: 10.1007/s10472-012-9324-8