Minimization of the zeroth Neumann eigenvalues with integrable potentials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimization of the zeroth Neumann eigenvalues with integrable potentials

For an integrable potential q on the unit interval, let λ0(q) be the zeroth Neumann eigenvalue of the Sturm–Liouville operator with the potential q. In this paper we will solve the minimization problem L̃1(r) = infq λ0(q), where potentials q have mean value zero and L1 norm r . The final result is L̃1(r)=−r/4. The approach is a combination of variational method and limiting process, with the help...

متن کامل

Minimization of Eigenvalues of One-Dimensional p-Laplacian with Integrable Potentials

In this paper, we will use the variational method and limiting approach to solve the minimization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-Laplacian when the L1 norm of integrable potentials is given. Combining with the results for the corresponding maximization problems, we have obtained the explicit results for these eigenvalues.

متن کامل

Neumann-like integrable models

A countable class of integrable dynamical systems, with four dimensional phase space and conserved quantities in involution (Hn, In) are exhibited. For n = 1 we recover Neumann sytem on T ∗ S2. All these systems are also integrable at the quantum level.

متن کامل

MAXIMIZATION OF EIGENVALUES OF ONE-DIMENSIONAL p-LAPLACIAN WITH INTEGRABLE POTENTIALS

In this paper we will use variational methods and limiting approaches to give a complete solution to the maximization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-Laplacian with integrable potentials of fixed L 1-norm.

متن کامل

Maximising Neumann eigenvalues on rectangles

We obtain results for the spectral optimisation of Neumann eigenvalues on rectangles in R with a measure or perimeter constraint. We show that the rectangle with measure 1 which maximises the k’th Neumann eigenvalue converges to the unit square in the Hausdorff metric as k → ∞. Furthermore, we determine the unique maximiser of the k’th Neumann eigenvalue on a rectangle with given perimeter. AMS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2012

ISSN: 0294-1449

DOI: 10.1016/j.anihpc.2012.01.007