Minimax sparse principal subspace estimation in high dimensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Sparse Principal Subspace Estimation in High Dimensions

We study sparse principal components analysis in high dimensions , where p (the number of variables) can be much larger than n (the number of observations), and analyze the problem of estimating the subspace spanned by the principal eigenvectors of the population covariance matrix. We prove optimal, non-asymptotic lower and upper bounds on the minimax subspace estimation error under two differe...

متن کامل

Minimax Rates of Estimation for Sparse PCA in High Dimensions

We study sparse principal components analysis in the high-dimensional setting, where p (the number of variables) can be much larger than n (the number of observations). We prove optimal, non-asymptotic lower and upper bounds on the minimax estimation error for the leading eigenvector when it belongs to an lq ball for q ∈ [0, 1]. Our bounds are sharp in p and n for all q ∈ [0, 1] over a wide cla...

متن کامل

Robust Sparse Estimation Tasks in High Dimensions

In this paper we initiate the study of whether or not sparse estimation tasks can be performed efficiently in high dimensions, in the robust setting where an ε-fraction of samples are corrupted adversarially. We study the natural robust version of two classical sparse estimation problems, namely, sparse mean estimation and sparse PCA in the spiked covariance model. For both of these problems, w...

متن کامل

Minimax Estimation in Sparse Canonical Correlation Analysis

Canonical correlation analysis is a widely used multivariate statistical technique for exploring the relation between two sets of variables. This paper considers the problem of estimating the leading canonical correlation directions in high dimensional settings. Recently, under the assumption that the leading canonical correlation directions are sparse, various procedures have been proposed for...

متن کامل

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo

We consider the problem of estimating the joint density of a d-dimensional random vector X = (X1,X2, ...,Xd) when d is large. We assume that the density is a product of a parametric component and a nonparametric component which depends on an unknown subset of the variables. Using a modification of a recently developed nonparametric regression framework called rodeo (regularization of derivative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2013

ISSN: 0090-5364

DOI: 10.1214/13-aos1151