Minimax Mutual Information Approach for Independent Component Analysis
نویسندگان
چکیده
منابع مشابه
Minimax Mutual Information Approach for Independent Component Analysis
Minimum output mutual information is regarded as a natural criterion for independent component analysis (ICA) and is used as the performance measure in many ICA algorithms. Two common approaches in information-theoretic ICA algorithms are minimum mutual information and maximum output entropy approaches. In the former approach, we substitute some form of probability density function (pdf) estima...
متن کاملEstimating Squared-Loss Mutual Information for Independent Component Analysis
Accurately evaluating statistical independence among random variables is a key component of Independent Component Analysis (ICA). In this paper, we employ a squared-loss variant of mutual information as an independence measure and give its estimation method. Our basic idea is to estimate the ratio of probability densities directly without going through density estimation, by which a hard task o...
متن کاملNonnegative independent component analysis based on minimizing mutual information technique
A novel neural network technique for nonnegative independent component analysis is proposed in this letter. Compared with other algorithms, this method can work efficiently even when the source signals are not well grounded. Moreover, this method is insensitive to the particular underlying distribution of the source data. Experimental results demonstrate the advantages of our approach in achiev...
متن کاملBMICA-Independent Component Analysis Based on B-Spline Mutual Information Estimation for EEG Signals
Electroencephalogram (EEG) serves as an extremely valuable tool for clinicians and researchers to study the activity of the brain in a non-invasive manner. It has long been used for the diagnosis of brain damage, for categorizing sleep stages and various central nervous system disorders like seizures and epilepsy. The EEG source signals are mixed however with other signals such as Electrooculog...
متن کاملThe effect of mutual information on independent component analysis in EEG/MEG analysis: a simulation study.
OBJECTIVE This study investigated the influence of mutual information (MI) on temporal and dipole reconstruction based on independent components (ICs) derived from independent component analysis (ICA). METHOD Artificial electroencephalogram (EEG) datasets were created by means of a neural mass model simulating cortical activity of two neural sources within a four-shell spherical head model. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2004
ISSN: 0899-7667,1530-888X
DOI: 10.1162/089976604773717595