Minimax and minimax adaptive estimation in multiplicative regression: locally bayesian approach

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning locally minimax optimal Bayesian networks

We consider the problem of learning Bayesian network models in a non-informative setting, where the only available information is a set of observational data, and no background knowledge is available. The problem can be divided into two different subtasks: learning the structure of the network (a set of independence relations), and learning the parameters of the model (that fix the probability ...

متن کامل

Adaptive minimax regression estimation over sparse lq-hulls

Given a dictionary of Mn predictors, in a random design regression setting with n observations, we construct estimators that target the best performance among all the linear combinations of the predictors under a sparse `q-norm (0 ≤ q ≤ 1) constraint on the linear coefficients. Besides identifying the optimal rates of convergence, our universal aggregation strategies by model mixing achieve the...

متن کامل

Minimax Optimal Procedures for Locally Private Estimation

Working under a model of privacy in which data remains private even from the statistician,we study the tradeoff between privacy guarantees and the risk of the resulting statistical estima-tors. We develop private versions of classical information-theoretic bounds, in particular thosedue to Le Cam, Fano, and Assouad. These inequalities allow for a precise characterization ofs...

متن کامل

Minimax regression estimation for Poisson coprocess

For a Poisson point process X , Itô’s famous chaos expansion implies that every square integrable regression function r with covariate X can be decomposed as a sum of multiple stochastic integrals called chaos. In this paper, we consider the case where r can be decomposed as a sum of δ chaos. In the spirit of Cadre and Truquet (2015), we introduce a semiparametric estimate of r based on i.i.d. ...

متن کامل

Minimax adaptive dimension reduction for regression

In this paper, we address the problem of regression estimation in the context of a p-dimensional predictor when p is large. We propose a general model in which the regression function is a composite function. Our model consists in a nonlinear extension of the usual sufficient dimension reduction setting. The strategy followed for estimating the regression function is based on the estimation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2011

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-011-0354-7