Minimal number of points with bad reduction for elliptic curves overP1

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Elliptic Curves with a Given Number of Points

We describe how the theory of complex multiplication can be used to construct elliptic curves over a finite field with a given number of rational points and illustrate how this method can be applied to primality testing.

متن کامل

Elliptic Curves with a Given Number of Points

We present a non-archimedean method to construct, given an integer N ≥ 1, a finite field Fq and an elliptic curve E/Fq such that E(Fq) has order N .

متن کامل

Computing Elliptic Curves over Q: Bad Reduction at One Prime

We discuss a new algorithm for finding all elliptic curves over Q with a given conductor. Though based on (very) classical ideas, this approach appears to be computationally quite efficient. We provide details of the output from the algorithm in case of conductor p or p2, for p prime, with comparisons to existing data.

متن کامل

Averages of the Number of Points on Elliptic Curves

If E is an elliptic curve defined over Q and p is a prime of good reduction for E, let E(Fp) denote the set of points on the reduced curve modulo p. Define an arithmetic function ME(N) by setting ME(N) := #{p : #E(Fp) = N}. Recently, David and the third author studied the average of ME(N) over certain “boxes” of elliptic curves E. Assuming a plausible conjecture about primes in short intervals,...

متن کامل

Minimal Models for Elliptic Curves

In the 1960’s, the efforts of many mathematicians (Kodaira, Néron, Raynaud, Tate, Lichtenbaum, Shafarevich, Lipman, and Deligne-Mumford) led to a very elegant theory of preferred integral models for both (positive-genus) curves and abelian varieties. This work was largely inspired by the theory of minimal models for smooth proper algebraic surfaces over algebraically closed fields [2]. There ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2013

ISSN: 0035-7596

DOI: 10.1216/rmj-2013-43-6-2017