Minimal Immersions of Kaehler Manifolds into Complex Space Forms
نویسندگان
چکیده
منابع مشابه
Spherical Minimal Immersions of Spherical Space Forms
Introduction. A number of authors [C], [DW1], [DW2], [L], [T] have studied minimal isometric immersions of Riemannian manifolds into round spheres, and in particular of round spheres into round spheres. As was observed by T. Takahashi [T], if Φ:M → S(r) ⊂ R is such a minimal immersion, then the components of Φ must be eigenfuctions of the Laplace operator on M for the same eigenvalue. And conve...
متن کاملMinimal Immersions of Kähler Manifolds into Euclidean Spaces
We prove that a minimal isometric immersion of a Kähler-Einstein or homogeneous Kähler manifold into an Euclidean space must be totally geodesic. As an application we show that an open subset of the real hyperbolic plane RH2 cannot be minimally immersed into the Euclidean space. As another application we prove that if an irreducible Kähler manifold is minimally immersed in an Euclidean space th...
متن کاملImmersions of Surfaces into Aspherical 3-manifolds
We study finite order invariants of null-homotopic immersions of a closed orientable surface into an aspherical orientable 3-manifold. We give the foundational constructions, and classify all order one invariants.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 1987
ISSN: 0387-3870
DOI: 10.3836/tjm/1270141806