Minimal and characteristic polynomials of symmetric matrices in characteristic two
نویسندگان
چکیده
Let k be a field of characteristic two. We prove that monic polynomial f∈k[X] degree n≥1 is the minimal/characteristic symmetric matrix with entries in if and only it not product pairwise distinct inseparable irreducible polynomials. In this case, we f minimal size n. also any element α∈kalg eigenvalue n or n+1, first case happening α separable.
منابع مشابه
Characteristic polynomials of real symmetric random matrices
It is shown that the correlation functions of the random variables det(λ−X), in which X is a real symmetric N × N random matrix, exhibit universal local statistics in the large N limit. The derivation relies on an exact dual representation of the problem: the k-point functions are expressed in terms of finite integrals over (quaternionic) k × k matrices. However the control of the Dyson limit, ...
متن کاملSmall-Span Characteristic Polynomials of Integer Symmetric Matrices
Let f(x) ∈ Z[x] be a totally real polynomial with roots α1 ≤ . . . ≤ αd. The span of f(x) is defined to be αd − α1. Monic irreducible f(x) of span less than 4 are special. In this paper we give a complete classification of those small-span polynomials which arise as characteristic polynomials of integer symmetric matrices. As one application, we find some low-degree polynomials that do not aris...
متن کاملCharacteristic Polynomials of p-adic Matrices
We analyze the precision of the characteristic polynomial χ(A) of an n × n p-adic matrix A using differential precision methods developed previously. When A is integral with precision O(p), we give a criterion (checkable in time O (̃n)) for χ(A) to have precision exactly O(p). We also give a O (̃n) algorithm for determining the optimal precision when the criterion is not satisfied, and give examp...
متن کاملCharacteristic Polynomials of Nonnegative Integral Square Matrices and Clique Polynomials
Clique polynomials of vertex-weighted simple graphs coincide with polynomials of the form det(1 − xM), M a square matrix over N.
متن کاملCharacteristic Polynomials
Introduction. Let F be a field and let V be a finite dimensional vector space over F which is also a module over the ring F[a]. Here a may lie in any extension ring of F. We do not assume, as yet, that V is a faithful module, so that a need not be a linear transformation on V. It is known that by means of a decomposition of V into cyclic F[a]-modules we may obtain a definition of the characteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2021.11.025