Milnor–Selberg zeta functions and zeta regularizations
نویسندگان
چکیده
منابع مشابه
Zeta Functions
We review various periodic orbit formulae for the zeta function whose zeros represent semiclassical approximations to the energy levels of chaotic systems. In particular, we focus on the Riemann-Siegel-resummed expression. The emphasis is on the ability of such formulae to reproduce the analytic properties of the spetral determinant, whose zeros are the exact quantum levels. As an example, the ...
متن کاملZeta Functions and Chaos
This paper is an expanded version of lectures given at M.S.R.I. in June of 2008. It provides an introduction to various zeta functions emphasizing zeta functions of a finite graph and connections with random matrix theory and quantum chaos. Section 2. Three Zeta Functions For the number theorist, most zeta functions are multiplicative generating functions for something like primes (or prime ide...
متن کاملZeta and Related Functions
Riemann Zeta Function 602 25.2 Definition and Expansions . . . . . . . . 602 25.3 Graphics . . . . . . . . . . . . . . . . . . 603 25.4 Reflection Formulas . . . . . . . . . . . . 603 25.5 Integral Representations . . . . . . . . . 604 25.6 Integer Arguments . . . . . . . . . . . . 605 25.7 Integrals . . . . . . . . . . . . . . . . . . 606 25.8 Sums . . . . . . . . . . . . . . . . . . . 606 25....
متن کاملCritical dimensions and zeta regularizations in string theories
Within the operator version of BRST quantization one may proceed as follows: First define a hermitian and formally nilpotent BRST charge. Then look for possible state spaces which yield nontrivial cohomologies. Two of us have previously used this procedure for finite degrees of freedom. In the case of infinite degrees of freedom the procedure requires a precise regularization. We propose here a...
متن کاملSecant zeta functions
MATILDE LALÍN, FRANCIS RODRIGUE, AND MATHEW ROGERS Abstract. We study the series ψs(z) := ∑∞ n=1 sec(nπz)n −s, and prove that it converges under mild restrictions on z and s. The function possesses a modular transformation property, which allows us to evaluate ψs(z) explicitly at certain quadratic irrational values of z. This supports our conjecture that πψk( √ j) ∈ Q whenever k and j are posit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2013
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2012.10.015