Microtesla MRI with dynamic nuclear polarization
نویسندگان
چکیده
منابع مشابه
Microtesla MRI with dynamic nuclear polarization.
Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla...
متن کاملMicrotesla SABRE Enables 10% Nitrogen-15 Nuclear Spin Polarization
Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B(3) amide) by conducting "signal amplification by reversible exchange" (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the (15)N NMR signals for t...
متن کاملDynamic nuclear polarization with a rigid biradical.
A new polarizing agent with superior performance in dynamic nuclear polarization experiments is introduced, and utilizes two TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) moieties connected through a rigid spiro tether (see structure). The observed NMR signal intensities were enhanced by a factor of 1.4 compared to those of TOTAPOL, a previously described TEMPO-based biradical with a flexible te...
متن کاملDynamic nuclear polarization with single electron spins.
We polarize nuclear spins in a GaAs double quantum dot by controlling two-electron spin states near the anticrossing of the singlet (S) and m(S)= +1 triplet (T+) using pulsed gates. An initialized S state is cyclically brought into resonance with the T+ state, where hyperfine fields drive rapid rotations between S and T+, "flipping" an electron spin and "flopping" a nuclear spin. The resulting ...
متن کاملMicrotesla MRI of the human brain combined with MEG.
One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnetic Resonance
سال: 2010
ISSN: 1090-7807
DOI: 10.1016/j.jmr.2010.08.015