Microorganism Assisted Synthesized Nanoparticles for Catalytic Applications
نویسندگان
چکیده
منابع مشابه
Nanoparticles of ZrPO4 for green catalytic applications.
Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure).
متن کاملBacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. He...
متن کاملApplications of gold nanoparticles for medical imaging
Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...
متن کاملMicrowave-assisted green synthesis of Gold nanoparticles and Its catalytic activity
The present work demonstrated a green approach of synthesis of gold nanoparticles using Eupatorium odoratum leaf extract as reducing and stabilizing agent assisted with microwave irradiation. Effects of various concentrations of leaf extract on the preparation of gold nanoparticles have been investigated and it was monitored by undertaking UV-vis spectroscopic studies. The experimental results ...
متن کاملStructural and Optical Study of SnO Nanoparticles Synthesized Using Microwave–Assisted Hydrothermal Route
SnO nanoparticles were synthesized using microwave–assisted hydrothermal method. It was noticed that at 300 and 600 watt microwave power, SnO formed and remained in the tetragonal phase. At 900 watt, SnO2 started appearing and a mixture of SnO and SnO2 phases coexisted. The particle size varied from ~2 to ~13 nm at 300 to 900 watt radiation power. The UV-V absorption spectra showed the excitoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2019
ISSN: 1996-1073
DOI: 10.3390/en12010190