Micromechanical Modeling Tensile and Fatigue Behavior of Fiber-Reinforced Ceramic-Matrix Composites Considering Matrix Fragmentation and Closure

نویسندگان

چکیده

In this paper, micromechanical constitutive models are developed to predict the tensile and fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) considering matrix fragmentation closure. Damage fragmentation, interface debonding, fiber’s failure considered in analysis response, closure, debonding repeated sliding hysteresis response. Relationships between established. Experimental density, curves, loops mini, unidirectional, cross-ply, 2D plain-woven SiC/SiC predicted using models. Matrix density changes with increasing or decreasing applied stress, which affects nonlinear strain composite under loading, range loading.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix cracking of fiber-reinforced ceramic composites in shear

The mechanics of cracking in fiber-reinforced ceramic matrix composites (CMCs) under general loadings remains incomplete. The present paper addresses one outstanding aspect of this problem: the development of matrix cracks in unidirectional plies under shear loading. To this end, we develop a model based on potential energy differences upstream and downstream of a fully bridged steady-state mat...

متن کامل

Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures

In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECF...

متن کامل

Computational modeling of damage evolution in unidirectional fiber reinforced ceramic matrix composites

A ®nite element model for investigating damage evolution in brittle matrix composites was developed. This modeling is based on an axisymmetric unit cell composed of a ®ber and its surrounding matrix. The unit cell was discretized into linearly elastic elements for the ®ber and the matrix and cohesive elements which allow cracking in the matrix, ®ber-matrix interface, and ®ber. The cohesive elem...

متن کامل

Micromechanical modeling of fiber reinforced pervious concrete composites

Pervious concrete is widely used in today’s construction industry, e.g.. parking lots, airport runways, etc. However, the durability and strength of the porous concrete remains a challenge, as the binding material proportion is low and the use of fi ne aggregates is nearly 0. Increasing the compressive load, the failure appears fi rst in the weak concrete zone induced by the random distribution...

متن کامل

Anomaly Detection and Microstructure Characterization in Fiber Reinforced Ceramic Matrix Composites

ANOMALY DETECTION AND MICROSTRUCTURE CHARACTERIZATION IN FIBER REINFORCED CERAMIC MATRIX COMPOSITES Name: Bricker, Stephen E. University of Dayton Advisor: Dr. Russell Hardie Ceramic matrix composites (CMCs) have the potential to replace current superalloys being used in hot components of jet engines. CMCs with continuous fiber reinforcement exhibit significant strength retention beyond tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of composites science

سال: 2021

ISSN: ['2504-477X']

DOI: https://doi.org/10.3390/jcs5070187