Microengineered osteoinductive and vasculogenic scaffold
نویسندگان
چکیده
منابع مشابه
Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells
Three-dimensional (3D) cell constructs are expected to provide osteoinductive materials to develop cell-based therapies for bone regeneration. The proliferation and spontaneous aggregation capability of induced pluripotent stem cells (iPSCs) thus prompted us to fabricate a scaffold-free iPSC construct as a transplantation vehicle. Embryoid bodies of mouse gingival fibroblast-derived iPSCs (GF-i...
متن کاملMicroengineered hydromechanical cochlear model.
Micromachined fluid-filled variable impedance waveguides intended to mimic the mechanics of the passive mammalian cochlea have been fabricated and experimentally examined. The structures were microfabricated with dimensions similar to those of the biological system. Experimental tests demonstrate acoustically excited traveling fluid-structure waves with phase accumulations between 1.5 and 3 pi ...
متن کاملMicroengineered hydrogels for tissue engineering.
Hydrogels have been extensively used in various biomedical applications such as drug delivery and biosensing. More recently the ability to engineer the size and shape of biologically relevant hydrogels has generated new opportunities in addressing challenges in tissue engineering such as vascularization, tissue architecture and cell seeding. Here, we discuss the use of microengineered hydrogels...
متن کاملMicroengineered synthetic cellular microenvironment for stem cells.
Stem cells possess the ability of self-renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and...
متن کاملMicroengineered platforms for cell mechanobiology.
Mechanical forces play important roles in the regulation of various biological processes at the molecular and cellular level, such as gene expression, adhesion, migration, and cell fate, which are essential to the maintenance of tissue homeostasis. In this review, we discuss emerging bioengineered tools enabled by microscale technologies for studying the roles of mechanical forces in cell biolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2016
ISSN: 2296-4185
DOI: 10.3389/conf.fbioe.2016.01.02350