Microbial reduction of manganese coupled to toluene oxidation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Manganese ( Iii ) Reduction Fueled by Anaerobic Acetate Oxidation

Background: Microbial manganese (Mn) cycling in marine and freshwater environments is generally assumed to consist of Mn oxidation in oxic water columns and Mn(IV) oxide reduction in anoxic sediments [1] as the only two bioavailable Mn redox species. This dogma was recently overturned with the discovery that soluble Mn dominates the soluble Mn pool at μM concentrations in suboxic environments [...

متن کامل

Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation.

Soluble manganese in the intermediate +III oxidation state (Mn3+ ) is a newly identified oxidant in anoxic environments, whereas acetate is a naturally abundant substrate that fuels microbial activity. Microbial populations coupling anaerobic acetate oxidation to Mn3+ reduction, however, have yet to be identified. We isolated a Shewanella strain capable of oxidizing acetate anaerobically with M...

متن کامل

Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.

The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized furt...

متن کامل

Microbial oxidation and reduction of manganese: consequences in groundwater and applications.

In the natural environment, manganese is found as reduced soluble or adsorbed Mn(II) and insoluble Mn(III) and Mn(IV) oxides. Mn oxidation has been reported in various microorganisms. Several possible pathways, indirect or direct, have been proposed. A wider variety of Mn-reducing microorganisms, from highly aerobic to strictly anaerobic, has been described. The mechanisms of Mn reduction can b...

متن کامل

Acetate oxidation coupled to Fe(iii) reduction in hyperthermophilic microorganisms.

No hyperthermophilic microorganisms have previously been shown to anaerobically oxidize acetate, the key extracellular intermediate in the anaerobic oxidation of organic matter. Here we report that two hyperthermophiles, Ferroglobus placidus and "Geoglobus ahangari," grow at 85 degrees C by oxidizing acetate to carbon dioxide, with Fe(III) serving as the electron acceptor. These results demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: FEMS Microbiology Ecology

سال: 1997

ISSN: 0168-6496

DOI: 10.1016/s0168-6496(96)00082-7