Micro-batch and data frequency for stream processing on multi-cores

نویسندگان

چکیده

Latency or throughput is often critical performance metrics in stream processing. Applications’ can fluctuate depending on the input stream. This unpredictability due to variety data arrival frequency and size, complexity, other factors. Researchers are constantly investigating new ways mitigate impact of these variations with self-adaptive techniques involving elasticity micro-batching. However, there a lack benchmarks capable creating test scenarios further evaluate techniques. work extends improves SPBench benchmarking framework support dynamic micro-batching management. We also propose set algorithms that generates most commonly used patterns for processing related work. It allows creation wide scenarios. To validate our solution, we use create custom Intel TBB FastFlow. These two libraries leverage parallelism multi-core architectures. Our results demonstrated cases did not benefit from micro-batches multi-cores. For different configurations, ensured lowest latency, while FastFlow assured higher shorter pipelines.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FERP Interface and Interconnect Cores for Stream Processing Applications

As SoC technology use increases, the question arises of how to connect the on-chip components. Current solutions use familiar components (such as busses and direct links) but these have throughput concerns and unnecessarily complicate the system design. This paper introduces the full/empty register pipe (FERP) interface and a collection of IP cores to support it. Along with its dataflow computa...

متن کامل

Sensors Data-Stream Processing Middleware based on Multi-Agent Model

The goal of this study is to propose an architecture for an intelligent sensor data processing middleware. In order to fulfill the ambient assisted living data processing requirements we design a flexible and scalable architecture based on multi-agent model. This architecture allows acquisition, interpretation and aggregation of sensor data-streams. Our system is able to process different senso...

متن کامل

Apache FlinkTM: Stream and Batch Processing in a Single Engine

Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continuous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this pape...

متن کامل

Pig Squeal: Bridging Batch and Stream Processing Using Incremental Updates

Title of dissertation: Pig Squeal: Bridging Batch and Stream Processing Using Incremental Updates James Holmes Lampton, Jr., Doctor of Philosophy, 2015 Dissertation directed by: Professor Ashok Agrawala Department of Computer Science As developers shift from batch MapReduce to stream processing for better latency, they are faced with the dilemma of changing tools and maintaining multiple code b...

متن کامل

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Supercomputing

سال: 2023

ISSN: ['0920-8542', '1573-0484']

DOI: https://doi.org/10.1007/s11227-022-05024-y