Metrizability of inverse images of metric spaces under open perfect and 0-dimensional mappings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Images of Zero-dimensional Separable Metric Spaces

Let Q denote the rationals, P the irrationals, C the Cantor set and L the space C {p} (where p e C). Let / : X —> Y be a perfect continuous surjection. We show: (1) If X G { Q , P, QxP} , or if / is irreducible and Xe{C, L}, then Y is homeomorphic to X if Y is zero-dimensional. (2) If X G {P, C, L} and / is irreducible, then there is a dense subset S of Y such that / | /*~[S] is a homeomorphism...

متن کامل

Topology and Metrizability of Cone Metric Spaces

Abstract: Replacing the set of real numbers by an ordered Banach space in the definition of a metric, Guang and Xian [5] introduced the concept of a cone metric and obtained some fixed point Theorems for contractive mappings on cone metric spaces. It has been shown that every cone metric space is metrizable [2-4]. In this paper we review and simplify some results of [6] and as a consequence of ...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Metrizability of spaces of homomorphisms between metric vector spaces

Ťhis note tries to give an answer to the following question: Is there a sufficiently rich class of metric vector spaces such that sufficiently large spaces of continuous linear maps between them are metrizable?

متن کامل

Metrizability of Cone Metric Spaces Via Renorming the Banach Spaces

In this paper we show that by renorming an ordered Banach space, every cone P can be converted to a normal cone with constant K = 1 and consequently due to this approach every cone metric space is really a metric one and every theorem in metric space is valid for cone metric space automatically.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1972

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-24-2-175-180