Metric dimensions of minor excluded graphs and minor exclusion in groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric dimensions of minor excluded graphs and minor exclusion in groups

An infinite graph Γ is minor excluded if there is a finite graph that is not a minor of Γ. We prove that minor excluded graphs have finite Assouad-Nagata dimension and study minor exclusion for Cayley graphs of finitely generated groups. Our main results and observations are: (1) minor exclusion is not a group property: it depends on the choice of generating set; (2) a group with one end has a ...

متن کامل

The Minor Crossing Number of Graphs with an Excluded Minor

The minor crossing number of a graph G is the minimum crossing number of a graph that contains G as a minor. It is proved that for every graph H there is a constant c, such that every graph G with no H-minor has minor crossing number at most c|V (G)|.

متن کامل

An Excluded Minor Characterization of Seymour Graphs

A graph G is said to be aSeymour graph if for any edge set F there exist |F | pairwise disjoint cuts each containing exactly one element of F , provided for every circuit C of G the necessary condition |C∩F | ≤ |C \F | is satisfied. Seymour graphs behave well with respect to some integer programs including multiflow problems, or more generally odd cut packings, and are closely related to matchi...

متن کامل

Excluded-Minor Characterization of Apex-Outerplanar Graphs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Graph Mino...

متن کامل

Recent Excluded Minor Theorems for Graphs

A graph is a minor of another if the first can be obtained from a subgraph of the second by contracting edges. An excluded minor theorem describes the structure of graphs with no minor isomorphic to a prescribed set of graphs. Splitter theorems are tools for proving excluded minor theorems. We discuss splitter theorems for internally 4-connected graphs and for cyclically 5-connected cubic graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2015

ISSN: 0218-1967,1793-6500

DOI: 10.1142/s0218196715500095