Methane seepage at Vestnesa Ridge (NW Svalbard) since the Last Glacial Maximum
نویسندگان
چکیده
منابع مشابه
The Last Glacial Maximum.
We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pac...
متن کاملTemporal constraints on hydrate-controlled methane seepage off Svalbard.
Methane hydrate is an icelike substance that is stable at high pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release...
متن کاملClosing the sea level budget at the Last Glacial Maximum.
Establishing the volume of excess ice contained in the global ice sheets during the Last Glacial Maximum (LGM; ∼26,000–19,000 y ago) remains a longstanding problem in Ice Age climate dynamics. Expressed as the equivalent lowering of global mean sea level (GMSL), estimates of this value have varied from 105 (1) to 163 m (2), with many estimates suggesting ∼120 m (3). This wide range introduces s...
متن کاملNew evidence for high discharge to the Chukchi shelf since the Last Glacial Maximum
Using CHIRP subbottom profiling across the Chukchi shelf, offshore NW Alaska, we observed a large incised valley that measures tens of kilometers in width. The valley appears to have been repeatedly excavated during sea level lowering; however, the two most recent incisions appear to have been downcut during the last sea level rise, suggesting an increase in the volume of discharge. Modern drai...
متن کاملFactors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum
The oxidative capacity of past atmospheres is highly uncertain. We present here a new climate–biosphere– chemistry modeling framework to determine oxidant levels in the present and past troposphere. We use the GEOS-Chem chemical transport model driven by meteorological fields from the NASA Goddard Institute of Space Studies (GISS) ModelE, with land cover and fire emissions from dynamic global v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quaternary Science Reviews
سال: 2018
ISSN: 0277-3791
DOI: 10.1016/j.quascirev.2018.06.006