Methane oxidation over supported Pd catalysts prepared by magnetron sputtering

نویسندگان

چکیده

While magnetron sputtering has been used to deposit metals onto a range of solid substrates, its application produce porous heterogeneous catalysts in powder form is relatively unstudied. Here, sputtered Pd catalyst powders were prepared using shaker operated at optimal experimental settings give uniform coverage the powders, and tested abatement exhaust emissions natural gas fuelled engines via oxidation methane. nanoparticles deposited alumina, titania zeolite supports, form. X-ray diffraction confirmed that characteristic structure each support was maintained following sputtering. The quantity increased (a) with deposition time (b) as function order alumina < titania. methane activity, measured temperatures which 10% 50% conversions observed, T10 T50, content for most active over despite greater amount present on Overall, findings demonstrate viable method prepare precious metal based powders. Furthermore, this rapid one-step process complete after 10–20 min avoids any salt impurities or need solvent required traditional synthesis methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CrNx Films Prepared by DC Magnetron Sputtering and High-Power Pulsed Magnetron Sputtering: A Comparative Study

CrNx (0 ≤ x ≤ 0.91) films synthesized using highpower pulsed magnetron sputtering, also known as high-power impulse magnetron sputtering (HiPIMS), have been compared with those made by conventional direct-current (dc) magnetron sputtering (DCMS) operated at the same average power. The HiPIMS deposition rate relative to the DCMS rate was found to decrease linearly with increasing emission streng...

متن کامل

PdAu/C catalysts prepared by plasma sputtering for the electro-oxidation of glycerol

Co-sputtered Pd0.7Au0.3 catalyst and alternate sputtered Pd0.35Au0.3Pd0.35 and Au0.15Pd0.7Au0.15 materials were prepared by plasma deposition of Au and Pd atoms on a carbon diffusion layer. Atomic composition and metal loadings were evaluated from EDX and RBS, respectively. The low amount of deposited and of the resulting low metallic film thickness made TEM and XRD characterizations difficult ...

متن کامل

Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts

The performances of different promoters (CeO2, ZrO2 and Ce0.5Zr0.5O2 solid solution) modified Pd/SiC catalysts for methane combustion are studied. XRD and XPS results showed that Zr 4+ could be incorporated into the CeO2 lattice to form Zr0.5Ce0.5O2 solid solution. The catalytic activities of Pd/CeO2/SiC and Pd/ZrO2/SiC are lower than that of Pd/Zr0.5Ce0.5O2/SiC. The Pd/Zr0.5Ce0.5O2/SiC catalys...

متن کامل

Catalytic Partial Oxidation of Methane over Fe2(MoO4)3 Catalysts

The study of new energy carriers for sustainable energy conversion processes is a hot research area. Among the potential energy carriers one finds biogas, containing a large fraction of methane, which attracts high interests worldwide. However, to be more useful, e.g., concerning storage and transportation, conversion of gaseous methane fuel into liquid fuel like methanol is desired. The conven...

متن کامل

Carbon Nanotubes Synthesis by Chemical Vapor Deposition of Methane over Zn – Fe Mixed Catalysts Supported on Alumina

Carbon nanotubes were synthesized over a series of Zn-containing Fe/alumina catalysts by chemical vapor deposition method at two reaction temperatures of 850 and 950 °C using methane as a carbon source. Catalysts were synthesized by keeping Fe concentration constant and varying Zn concentration to study the effects of Zn. The catalysts were characterized using X – ray powder diffraction and N2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Surface & Coatings Technology

سال: 2021

ISSN: ['1879-3347', '0257-8972']

DOI: https://doi.org/10.1016/j.surfcoat.2021.127123