Metal-insulator transition on the Si(111)4×1-In surface with oxygen impurity
نویسندگان
چکیده
منابع مشابه
High pressure insulator-metal transition in molecular fluid oxygen.
We report the first experimental evidence for a metallic phase in fluid molecular oxygen. Our electrical conductivity measurements of fluid oxygen under dynamic quasi-isentropic compression show that a nonmetal-metal transition occurs at 3.4 fold compression, 4500 K, and 1.2 Mbar. We discuss the main features of the electrical conductivity dependence on density and temperature and give an inter...
متن کاملSurface States, Surface Metal-Insulator, and Surface Insulator-Metal Transitions ∗
I present an informal discussion of various cases where two-dimensional surface metal-insulator structural and charge-density-wave instabilities driven by partly filled surface states have been advocated. These include reconstructions of clean semiconductor surfaces and of W(100) and Mo(100), as well as anomalies on the hydrogen-covered surfaces H/W(110) and H/Mo(110), and possibly alkali-cover...
متن کاملMetal Insulator Transition
Metal Insulator transition(MIT) is characterized by the conductivity which will be zero in the insulator phase. In this term paper, we focus on Mott insulator, and a simple theoritical way to describe this MIT is the Hubbard Model .Finally, we will look at the experiments of Mott insulator transition .
متن کاملA surface-tailored, purely electronic, mott metal-to-insulator transition.
Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca(1.9)Sr(0.1)RuO4, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also o...
متن کاملDense electron system from gate-controlled surface metal-insulator transition.
Two-dimensional electron systems offer enormous opportunities for science discoveries and technological innovations. Here we report a dense electron system on the surface of single-crystal vanadium dioxide nanobeam via electrolyte gating. The overall conductance of the nanobeam increases by nearly 100 times at a gate voltage of 3 V. A series of experiments were carried out which rule out electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2013
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.88.165419