Meromorphic solutions of nonlinear ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Nonlinear Ordinary Differential Equations
Most physical processes are modeled by differential equations. First order ordinary differential equations, also known as dynamical systems, arise in a wide range of applications, including population dynamics, mechanical systems, planetary motion, ecology, chemical diffusion, etc., etc. See [19, 72,ODES] for additional material and applications. The goal of this chapter is to study and solve i...
متن کاملMeromorphic solutions of algebraic differential equations
where F is a polynomial in the first k+ 1 variables, whose coefficients are analytic functions of the independent variable z. If the conditions of Cauchy's theorem for the existence and uniqueness of the solution are satisfied, then (0.1) determines an analytic function in a neighbourhood of a given point z0. One of the most difficult problems in the analytic theory of differential equations is...
متن کاملSolutions Approaching Polynomials at Infinity to Nonlinear Ordinary Differential Equations
This paper concerns the solutions approaching polynomials at ∞ to n-th order (n > 1) nonlinear ordinary differential equations, in which the nonlinear term depends on time t and on x, x′, . . . , x(N), where x is the unknown function and N is an integer with 0 ≤ N ≤ n − 1. For each given integer m with max{1, N} ≤ m ≤ n− 1, conditions are given which guarantee that, for any real polynomial of d...
متن کاملBounds for Solutions of Ordinary Differential Equations
1. An upper bound for the norm of a system of ordinary differential equations can be obtained by comparison with a related first order differential equation, [4; 8]. This first order equation depends on an upper bound for the norm of the right side of the system. Recently, it has been pointed out [l; 6] that this same upper bound also gives a lower bound for the norm of the solution in terms of...
متن کاملWavelet Galerkin Solutions of Ordinary Differential Equations
Abstract. Advantage of wavelet Galerkin method over finite difference or element method has led to tremendous applications in science and engineering. In recent years there has been increasing attempt to find solutions of differential equations using wavelet techniques. In this paper, we elaborate the wavelet techniques and apply Galerkin procedure to analyse one dimensional harmonic wave equat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation
سال: 2010
ISSN: 1007-5704
DOI: 10.1016/j.cnsns.2009.11.013