Menger probabilistic G-metric-like space and fixed point theorems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on coupled fixed point and fixed point theory in partially ordered probabilistic like (quasi) Menger spaces

In this paper, we define the concept of probabilistic like Menger (probabilistic like quasi Menger) space (briefly, PLM-space (PLqM-space)). We present some coupled fixed point and fixed point results for certain contraction type maps in partially order PLM-spaces (PLqM- spaces).

متن کامل

Common Fixed Point Theorems in Menger Probabilistic Quasi-metric Spaces (communicated by Professor

In 1989, Kent and Richardson [Ordered probabilistic metric spaces, J. Austral. Math. Soc. Ser. A 46(1) (1989), 88-99, MR0966286 (90b:54022)] introduced the class of probabilistic quasi-metric spaces which offers a wider framework than that of metric spaces. The aim of this paper is to prove common fixed point theorems for single-valued and set-valued weakly compatible mappings in Menger probabi...

متن کامل

Fixed Point Theorems for α-Contractive Type Mappings in Menger Probabilistic Metric Spaces

In this paper, some new fixed point theorems in Menger probabilistic metric spaces are established. And then, some common fixed point theorems are obtained. Applications to the fixed point theory in partially ordered Menger probabilistic metric spaces are given. Mathematics Subject Classification: 47H10, 54H25

متن کامل

Unique Fixed Point Theorems In Metric Space

In this paper, we have established unique fixed point theorems in complete metric space and generalized in n-dimensional space. AMS Subject Classification (2010): 10 47H , 25 54H , 50 54E

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.06.68