Medical variational autoencoder and generative adversarial network for medical imaging

نویسندگان

چکیده

<p>erative adversarial networks have succeeded promising results in the medical imaging field. One of most significant challenges this regard is lack or limited data sharing. In our work, an approach for combining generative network (GAN) and variational autoencoder (VAE) models has been proposed to improve accuracy efficiency image analysis tasks. Our leverages capacity VAEs acquire condensed feature representations, ability GANs generate high-quality synthetic images learn embedding that keeps high-level abstract visual qualities. Inception score (IS) Frechet inception distance (FID) generated´ order demonstrate high quality images. Based on results, demonstrates potential VAE-GAN fusion clearly outperforms existing methods a variety The suggested algorithm explained, as are evaluations.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Adversarial Autoencoder Networks

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as “real” samples to slow down the convergence of discriminator th...

متن کامل

Adversarial Symmetric Variational Autoencoder

A new form of variational autoencoder (VAE) is developed, in which the joint distribution of data and codes is considered in two (symmetric) forms: (i) from observed data fed through the encoder to yield codes, and (ii) from latent codes drawn from a simple prior and propagated through the decoder to manifest data. Lower bounds are learned for marginal log-likelihood fits observed data and late...

متن کامل

Generative Adversarial Network based Synthesis for Supervised Medical Image Segmentation*

Modern deep learning methods achieve state-ofthe-art results in many computer vision tasks. While these methods perform well when trained on large datasets, deep learning methods suffer from overfitting and lack of generalization given smaller datasets. Especially in medical image analysis, acquisition of both imaging data and corresponding ground-truth annotations (e.g. pixel-wise segmentation...

متن کامل

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference mo...

متن کامل

Generative-Discriminitive Basis Learning for Medical Imaging

This paper presents a novel dimensionality reduction method for classification in medical imaging. The goal is to transform very high-dimensional input (typically, millions of voxels) to a low-dimensional representation (small number of constructed features) that preserves discriminative signal and is clinically interpretable. We formulate the task as a constrained optimization problem that com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science

سال: 2023

ISSN: ['2502-4752', '2502-4760']

DOI: https://doi.org/10.11591/ijeecs.v32.i1.pp494-505